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petitions Ganging up on 
research damages scientific 
discourse p.480

history Heroism, intrigue 
and posturing abound in a 
history of Antarctica p.478

anthropology Jared Diamond’s 
paean to traditional societies, 
reviewed p.477

energy Critics of energy-
efficiency policy overplay 
the rebound effect p.475

A vision for data science 
To get the best out of big data, funding agencies should develop shared tools for 

optimizing discovery and train a new breed of researchers, says Chris A. Mattmann. 

I believe that four advancements are 
necessary to achieve that aim. Methods for 
integrating diverse algorithms seamlessly 
into big-data architectures need to be found. 
Software development and archiving should 
be brought together under one roof. Data 
reading must become automated among 
formats. Ultimately, the interpretation of 
vast streams of scientific data will require a 
new breed of researcher equally familiar with 
science and advanced computing. 

algorithm integration
A project by my team at the JPL illustrates 
the challenges of working with big data. In 
2011, we were asked by the US National 
Climate Assessment to establish a 

(1012 bytes) are now common in Earth and 
space sciences, physics and genomics (see 
‘Data deluge’). But a lack of investment in 
services such as algorithm integration and 
file-format translation is limiting the ability 
to manipulate archival data to reveal new 
science. 

At the Jet Propulsion Laboratory (JPL) 
in Pasadena, California, I am a principal 
investigator in a big-data initiative, pursu-
ing projects on data archiving and mining, 
smart algorithms and low-power hardware 
for astronomy and Earth science. Rather than 
finding one system that can ‘do it all’ for any 
data set, my team aims to define a set of archi-
tectural patterns and collaboration models 
that can be adapted to a range of projects. 

Two small words — ‘big data’ — 
are getting a lot of play across the  
sciences. Funding agencies, such as 

the National Science Foundation and the 
National Institutes of Health in the United 
States, have created million-dollar pro-
grammes around the challenges of storing 
and handling vast data streams. Although 
these are important, I believe that agencies 
should focus on developing shared tools for 
optimizing discovery. 

Big data are big in three ways: the volume 
of information that systems must ingest, 
process and disseminate; the number and 
complexity of the types of information 
handled; and the rate at which information 
streams in or out. Terabyte-sized data sets 

A satellite image of snow on the Hindu Kush mountains in Asia, with regions of high absorption of sunlight by dust and black carbon shaded in red.
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DATA DELUGE
The billions of terabytes (TB) produced in one year 
by the SKA telescope (grey) will dwarf today's data 
sets in  genomics and climate science.

US National
Climate Assessment

(NASA projects), 2013

1,000 TB

Fifth assessment report
by the Intergovernmental
Panel on Climate Change

(IPCC), due 2014

2,500 TB

Square Kilometre Array 
(SKA), �rst light due 2020

22,000,000,000 TB
per year

Encyclopedia of
DNA Elements

(ENCODE), 2012

15 TB

computing facility to integrate a range of 
snow-related measurements — and to do so 
in a month. The data included observations 
from the western United States, Alaska and 
the Hindu Kush–Himalayan regions, as well 
as the entire Earth-observing record since 
2000 and subsequent monitoring. The data 
products and maps would amount to several 
hundred terabytes.

The algorithms to be incorporated were 
varied, and included codes for estimating 
snow coverage, grain size and absorp-
tion of solar radiation by dust and black  
carbon1. They had been written in IDL, a 
specialized programming language used by 
many researchers. Geographers, remote-
sensing experts and software programmers 
contributed.

Most computer scientists would assume 
that such a system would take years, not 
weeks, to develop. The algorithms would 
presumably have to be rewritten in a stand-
ard language such as C++, Java or Python, 
or one that could run on a fast computer 
system or infrastructure, such as Google’s 
Map Reduce model. 

But, in my experience, there is no need 
to rewrite scientific algorithms for big-
data systems. Rewriting only increases the  
barriers to communication between scien-
tists and computer engineers. Rewriting can 
also introduce costly errors.

Computer engineers should trust  
scientists to produce executable algo-
rithms, which can be plugged into a larger 
processing framework. The skill is in tying 
the input and output files and relevant 
parameters unobtrusively into the big-
data network, so that the algorithm can 
run seamlessly within it. With a modu-
lar approach, development can proceed 
quickly in parallel — we constructed our 
snow-science computing facility this way 
in less than a month. 

Development anD stewarDship
Today, different big-data computing tasks 
are usually undertaken by different teams. 
The bulk of agency funding goes to building 
specific long-standing archives or data grids2 
— systems such as the NASA Earth science 
Distributed Active Archive Centers or the 
International Virtual Observatory Alliance in 
astronomy — that disseminate, preserve and 
steward3 data. Large archives have received 
an average of US$100 million a year from US 
federal agencies over the past decade. 

By contrast, the development, integration 
and updating of science algorithms receives 
only between $1 million and $5 million per 
year in the United States. These tasks are 
carried out in science-computing facilities, 
which are often small and transient. Because 
they must do more for less, such facilities 
largely use and generate community-based 
open-source software4–6. Examples include 

Apache Hadoop7 and Apache Tika8, used 
in Earth science, biomedicine and business. 

Although data interpretation and archiv-
ing efforts have so far been funded separately 
and at strikingly dissimilar levels, their needs 
— such as workflow processing and file and 
resource management — are complemen-
tary and overlapping. As storage and com-
putation costs fall, algorithm developers are 
moving into preservation, both to archive 
their own work and to open new research 
windows on large data sets that were previ-
ously closed.

In the next decade, I believe that archives 
and science-computing facilities must merge. 
The international radio-astronomy commu-
nity is doing so in preparation for the Square 
Kilometre Array radio telescope, due to see 
first light in 2020. The enormous volume of 
data that the array will produce — 700 ter-
abytes each second — will, after just a few 
days, eclipse the current size of the Internet. 
Archives in the United States such as those at 
the National Radio Astronomy Observatory’s 
Expanded Very Large Array and the Atacama 
Large Millimeter/submillimeter Array are 
developing software to handle that deluge. 

many formats
Big-data systems must deal with thousands 
of file types and conventions. The commu-
nities that have formed around informa-
tion modelling, ontology and semantic web 
software address this complexity of data and 
metadata (descriptive terms attached to files) 
to some extent. But they have so far relied on 
human intervention. None has delivered the 
silver bullet: automatic solutions that iden-
tify file types and extract meaningful data 
from them.

Comparisons of observational and model 
data are, for example, under construction for 
the US National Climate Assessment and the 
Coupled Model Intercomparison Project of 
the Intergovernmental Panel on Climate 
Change. NASA uses the Hierarchical Data 
Format version 5 (HDF-5) and the HDF-
Earth Observing System metadata repre-
sentation. The outputs of climate models 
are stored in the Network Common Data 
Form, typically with climate and forecast 
metadata conventions9. Automatic methods 
will be needed to match and analyse these 
data, which amount to petabytes (1015 bytes). 

Some big-data fields are switching to 
formats like these that have better sup-
port. Astronomers, for instance, are turn-
ing to NASA’s HDF-5 file format from the 
Flexible Image Transport System that has 
been their standard. But history shows 
that defining a single, unifying file for-
mat is not the answer, because prolifera-
tion of file types will continue. Instead, we 
need a toolkit of automatic ways to boil 
file formats down to their essence, and 
more formats that are amenable to those 
approaches. We need flexible systems that 
can perform multiple functions and deal 
with diverse data. Encouraging efforts are 
under way, including with Apache OODT10 
and Apache Tika8.

people power
To solve big-data challenges, researchers 
need skills in both science and computing 
— a combination that is still all too rare. A 
new breed of ‘data scientist’ is necessary. 

As well as being data stewards, data  
scientists will develop bespoke algorithms 
for analysis and adapt file formats. They 
will understand the mathematics, stat-
istics and physics necessary to integrate 
science algorithms into efficient architec-
tures. They will find solutions beyond the 
fragmented community efforts that have 
dominated the past decade of development 
of big-data systems. 

Funding agencies should support comput-
ing facilities that combine big-data steward-
ship and software development, employing 
data scientists to bridge the gap. Coordina-
tion between agencies is crucial to avoid 
duplication. The Big Data Senior Steering 
Group, linking efforts across the National 
Science Foundation, the National Institutes 
of Health, NASA and others, is a promising 
early example. More oversight will be needed 
to establish new working patterns. 

Because big-data fields stretch across 
national as well as disciplinary boundaries, 
such facilities and panels must be interna-
tional. In centres of excellence around the 
world, such as the JPL, data scientists will 
help astronomers and Earth scientists to 
share their approaches with bioinformati-
cians, and vice versa.
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DATA DELUGE
The billions of terabytes (TB) produced in one year 
by the SKA telescope (grey) will dwarf today's data 
sets in  genomics and climate science.
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For the specialism to emerge and 
grow, data scientists will have to over-
come barriers that are common to 
multi disciplinary research. As well as 
acquiring understanding of a range of 
science subjects, they must gain aca-
demic recognition. Journals such as the 
Data Science Journal should become 
more prominent within the comput-
ing community. Software products and 
technologies should be valued more by 
academic committees. 

New interdisciplinary courses will 
be needed. The University of Califor-
nia, Berkeley, and Stanford University 
in California have set up introductory 
courses for computer scientists on big-
data techniques — more universities 
should follow suit. Natural scientists, 
too, should become familiar with com-
puting and format issues.

In my lectures for computer-science 
graduates, I have brought together stu-
dents at the University of Southern Cali-
fornia in Los Angeles with researchers at 
the JPL. Using real projects, my students 
see the challenges awaiting them in their 
future careers. I hope to employ some of 
them on the projects that will flow from 
the JPL’s big-data initiative. The technolo-
gies and approaches that they develop will 
spread beyond NASA through contribu-
tions to the open-source community.

Empowering students with knowledge 
of big-data infrastructures and open-
source systems now will allow them to 
make steps towards addressing the major 
challenges that big data pose. ■

Chris A. Mattmann is a senior 
computer scientist at the Jet Propulsion 
Laboratory, California Institute of 
Technology, Pasadena, California 91109, 
USA, and adjunct assistant professor 
in computer science at the University 
of Southern California, Los Angeles, 
California 90089, USA.
e-mail: chris.a.mattmann@nasa.gov 
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Buy a more fuel-efficient car and you 
will spend more time behind the 
wheel. That argument, termed the 

rebound effect, has earned critics of energy-
efficiency programmes a voice in the  
climate-policy debate, for example with an 
article in The New York Times entitled ‘When 
energy efficiency sullies the environment’1. 

The rebound effect idea — and its extreme 
variant the ‘backfire’ effect, in which 

supposed energy savings turn into greater 
energy use — stems from nineteenth-century 
economist Stanley Jevons. In his 1865 book 
The Coal Question, Jevons hypothesized  
that energy use rises as industry becomes 
more efficient because people produce and 
consume more goods as a result2.

The rebound effect is real and should be 
considered in strategic energy planning. 
But it has become a distraction. A vast 

The rebound effect 
is overplayed

Increasing energy efficiency brings emissions savings. 
Claims that it backfires are a distraction, say Kenneth 

Gillingham and colleagues. 

Fuel-efficient cars cost less to run, so people might use them a little more.  

Zh
A

n
G

 J
u

n
/X

in
h

u
A

 P
r

es
s

/C
o

r
B

is

2 4  J A n u A r y  2 0 1 3  |  V O L  4 9 3  |  n A T u r E  |  4 7 5

COMMENT



Article https://doi.org/10.1038/s41467-022-33128-9

Technology readiness levels for machine
learning systems

Alexander Lavin 1,2 , Ciarán M. Gilligan-Lee 3,4, Alessya Visnjic 5,
Siddha Ganju 2,6, Dava Newman 7, Sujoy Ganguly8, Danny Lange8,
Atílím Güneş Baydin 9, Amit Sharma 10, Adam Gibson11, Stephan Zheng 12,
Eric P. Xing13,14, Chris Mattmann 15, James Parr2 & Yarin Gal 16

The development and deployment of machine learning systems can be exe-
cuted easily with modern tools, but the process is typically rushed andmeans-
to-an-end. Lack of diligence can lead to technical debt, scope creep and mis-
aligned objectives, model misuse and failures, and expensive consequences.
Engineering systems, on the other hand, follow well-defined processes and
testing standards to streamline development for high-quality, reliable results.
The extreme is spacecraft systems, with mission critical measures and
robustness throughout the process. Drawing on experience in both spacecraft
engineering and machine learning (research through product across domain
areas), we’ve developed a proven systems engineering approach for machine
learning and artificial intelligence: theMachine Learning Technology Readiness
Levels framework defines a principled process to ensure robust, reliable, and
responsible systems while being streamlined for machine learning workflows,
including key distinctions from traditional software engineering, and a lingua
franca for people across teams and organizations to work collaboratively on
machine learning and artificial intelligence technologies. Here we describe the
framework and elucidate with use-cases from physics research to computer
vision apps to medical diagnostics.

The accelerating use of artificial intelligence (AI) andmachine learning
(ML) technologies in systems of software, hardware, data, and people
introduce vulnerabilities and risks due to dynamic and unreliable
behaviors; fundamentally, ML systems learn from data, introducing
known and unknown challenges in how these systems behave and
interactwith their environment. Currently, the approach to building AI
technologies is siloed: models and algorithms are developed in test-
beds isolated from real-world environments, and without the context
of larger systemsor broader products theywill be integratedwithin for
deployment. The main concern is models are typically trained and

tested on only a handful of curated datasets, without measures and
safeguards for future scenarios, and oblivious of the downstream tasks
and users. Evenmore,models and algorithms are often integrated into
a software stack without regard for the inherent stochasticity and
failure modes of the hidden ML components. Consider the massive
effect random seeds have on deep reinforcement learning model
performance1, for instance.

Other domains of engineering, such as civil and aerospace, follow
well-defined processes and testing standards to streamline develop-
ment for high-quality, reliable results.TechnologyReadiness Level (TRL)
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is a systems engineering protocol for deep tech2 and scientific
endeavors at scale, ideal for integrating many interdependent com-
ponents and cross-functional teamsofpeople. It is no surprise thatTRL
is a standard process and parlance in NASA3 and DARPA4.

For a spaceflight project, there are several defined phases, from
pre-concept toprototyping todeployed operations to end-of-life, each
with a series of exacting development cycles and reviews. This is in
stark contrast to common machine learning and software workflows,
which promote quick iteration, rapid deployment, and simple linear
progressions. Yet the NASA technology readiness process for space-
craft systems is overkill; we need robust ML technologies integrated
with larger systems of software, hardware, data, and humans, but not
necessarily for missions to Mars. We aim to bring systems engineering
to AI and ML by defining and putting into action a lean Machine
Learning Technology Readiness Levels (MLTRL) framework.We draw on
decades of AI and ML development, from research through produc-
tion, across domains and diverse data scenarios: for example, com-
puter vision in medical diagnostics and consumer apps, automation in
self-driving vehicles and factory robotics, tools for scientific discovery
and causal inference, streaming time-series in predictive maintenance
and finance.

In this paper, we define our framework for developing and
deploying robust, reliable, and responsible ML and data systems, with
several real test cases of advancing models and algorithms from R&D
through productization and deployment, including essential data
considerations—Fig. 1 illustrates the overall MLTRL process. Addi-
tionally, MLTRL prioritizes the role of AI ethics and fairness, and our
systems AI approach can help curb the large societal issues that can
result from poorly deployed and maintained AI and ML technologies,
such as the automation of systemic human bias, denial of individual
autonomy, and unjustifiable outcomes (see the Alan Turing Institute
Report on Ethical AI5). The adoption and proliferation of MLTRL pro-
vide a common nomenclature andmetric across teams and industries.
The standardization of MLTRL across the AI industry should help
teams and organizations develop principled, safe, and trusted
technologies.

Results
MLTRL defines technology readiness levels (TRLs) to guide and com-
municate machine learning and artificial intelligence (ML/AI)

development and deployment. A TRL represents the maturity of a
model or algorithm, data pipelines, software module, or composition
thereof; a typical ML system consists of many interconnected sub-
systems and components, and the TRL of the system is the lowest level
of its constituent parts6. Note we use "model” and "algorithm” some-
what interchangeably when referring to the technology under devel-
opment. The same MLTRL process and methods apply for a machine
translation model and for an A/B testing algorithm, for example. The
anatomy of a level is marked by gated reviews, evolving working
groups, requirements documentation with risk calculations, pro-
gressive code and testing standards, and deliverables such as TRL
Cards (Fig. 2) and ethics checklists. Templates and examples for
MLTRL deliverables will be open-sourced upon publication at ai-
infrastructure.org/mltrl. These components—which are crucial for
implementing the levels in a systematic fashion—as well as MLTRL
metrics and methods are concretely described in examples and in the
“Methods” section. Lastly, to emphasize the importance of data tasks
in ML, from data curation7 to data governance8, we state several
important data considerations at each MLTRL level.

Machine learning technology readiness levels
The levels are briefly defined as follows and in Fig. 1, and elucidated
with real-world examples later.

Level 0—First principles. This is a stage for greenfield AI research,
initiated with a novel idea, guiding question, or poking at a problem
from new angles. The work mainly consists of literature review,
building mathematical foundations, white-boarding concepts, and
algorithms, and building an understanding of the data—for work in
theoretical AI and ML, however, there will not yet be data to work
with (for example, a novel algorithm for Bayesian optimization9,
which could eventually be used for many domains and datasets).
The outcome of Level 0 is a set of concrete ideas with sound
mathematical formulation, to pursue through low-level experi-
mentation in the next stage. When relevant, this level expects
conclusions about data readiness, including strategies for getting
the data to be suitable for the specific ML task. To graduate, the
basic principles, hypotheses, data readiness, and research plans
need to be stated, referencing relevant literature. With graduation,
a TRL Card should be started to succinctly document the methods

Fig. 1 | MLTRL spans research (red) through prototyping (orange), producti-
zation (yellow), and deployment (green).Most ML workflows prescribe an iso-
lated, linear process of data processing, training, testing, and serving a model37.
Those workflows fail to define how ML development must iterate over that basic

process to become more mature and robust, and how to integrate with a much
larger system of software, hardware, data, and people. Not to mention MLTRL
continues beyond deployment: monitoring and feedback cycles are important for
continuous reliability and improvement over the product lifetime.
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and insights thus far—this key MLTRL deliverable is detailed in the
“Methods” section and Fig. 2.

Level 0 data—Not a hard requirement at this stage as it is largely
relevant to theoretical machine learning. That being said, data avail-
ability needs to be considered for defining any research project to
move past theory.

Level 0 review—The reviewer here is solely the lead of the research
lab or team, for instance, a Ph.D. supervisor.We assess hypotheses and
explorations for mathematical validity and potential novelty or utility,
not necessarily code nor end-to-end experiment results.

Level 1—Goal-oriented research. To progress from basic principles
to practical use, we design and run low-level experiments to analyze
specific model or algorithm properties (rather than end-to-end runs
for a performance benchmark score). This involves the collection and
processing of sample data to train and evaluate the model. This
sample data need not be the full data; it may be a smaller sample that
is currently available or more convenient to collect. In some cases it
may suffice to use synthetic data as the representative sample—in the
medical domain, for example, acquiring datasets can take many
months due to security and privacy constraints, so generating sam-
ple data can mitigate this blocker from early ML development. Fur-
ther, working with the sample data provides a blueprint for the data
collection and processing pipeline (including answering whether it is
even possible to collect all necessary data), that can be scaled up for
the next steps. The experiments, good results or not, and mathe-
matical foundations need to pass a review process with fellow
researchers before graduating to Level 2. The application is still
speculative, but through comparison studies and analyses, we start
to understand if/how/where the technology offers potential
improvements and utility. Code is research-caliber: The aim here is to
be quick and dirty, moving fast through iterations of experiments.
Hacky code is okay, and full test coverage is actually discouraged, as
long as the overall codebase is organized and maintainable. It is
important to start semantic versioning practices early in the project
lifecycle, which should cover code, models, and datasets. This is
crucial for retrospectives and reproducibility, issues that can be

costly and severe at later stages. This versioning information and
additional progress should be reported on the TRL Card (see, for
example, Fig. 2).

Level 1 data—At minimum, we work with sample data that is
representative of downstream real datasets, which can be a subset of
real data, synthetic data, or both. Beyond driving low-level ML
experiments, the sample data forces us to consider data acquisition
and processing strategies at an early stage before it becomes a
blocker later.

Level 1 review—The panel for this gated review is entirelymembers
of the research team, reviewing for scientific rigor in early experi-
mentation, and pointing to important concepts and prior work from
their respective areas of expertise. There may be several iterations of
feedback and additional experiments.

Level 2—Proof of Principle (PoP) development. Active R&D is initi-
ated, mainly by developing and running in testbeds: simulated envir-
onments and/or simulated data that closely matches the conditions
and data of real scenarios—note these are driven by model-specific
technical goals, not necessarily application or product goals (yet). An
important deliverable at this stage is the formal research requirements
document (with well-specified verification and validation (V&V10)
steps). A requirement is a singular documented physical or functional
need that a particular design, product, or process aims to satisfy.
Requirements aim to specify all stakeholders’ needs while not speci-
fying a specific solution. Definitions are incomplete without corre-
sponding measures for verification and validation (V&V). Verification:
Are we building the product right? Validation: Are we building the right
product?10 Here is one of several key decision points in the broader
process: The R&D team considers several paths forward and sets the
course: (A) prototype development towards Level 3, (B) continued
R&D for longer-term research initiatives and/or publications, or some
combination of A and B.We find the culmination of this stage is often a
bifurcation: some work moves to applied ML, while some circles back
for more research. This common MLTRL cycle is an instance of the
non-monotonic discovery switchback mechanism (detailed in the
“Methods” section and Fig. 3).

Fig. 2 | Thematurity of eachML technology is tracked via TRL Cards, which we
describe in the “Methods” section. Here is an example reflecting a neuro-
pathologymachine vision use-case22, detailed in the “Discussion” section. Note this
is a subset of a full TRL Card, which in reality lives as a full document in an internal
wiki. Notice the card clearly communicates the data sources, versions, and
assumptions. This helps mitigate invalid assumptions about performance and

generalizability when moving from R&D to production and promotes the use of
real-world data earlier in the project lifecycle. We recommend documenting
datasets thoroughly with semantic versioning and tools such as datasheets for
datasets76, and following data accountability best practices as they evolve (see
ref. 81).
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Level 2 data—Datasets at this stage may include publicly available
benchmark datasets, semi-simulated data based on the data sample in
Level 1, or fully simulated data based on certain assumptions about the
potential deployment environments. The data should allow research-
ers to characterize model properties, and highlight corner cases or
boundary conditions, in order to justify the utility of continuing R&D
on the model.

Level 2 review—To graduate from the PoP stage, the technology
needs to satisfy research claims made in previous stages (brought to
bear by the aforementioned PoP data in both quantitative and quali-
tative ways) with the analyses well-documented and reproducible.

Level 3—System development. Here we have checkpoints that push
code development towards interoperability, reliability, maintain-
ability, extensibility, and scalability. Codebecomesprototype-caliber: A
significant step up from research code in robustness and cleanliness.
This needs to be well-designed, well-architected for dataflow and
interfaces, generally covered by unit and integration tests, meet team
style standards, and sufficiently documented. Note the programmers’
mentality remains that this code will someday be refactored/scrapped
for productization; prototype code is relatively primitive with regard
to the efficiency and reliability of the eventual system. With the tran-
sition to Level 4 and proof-of-concept mode, the working group
should evolve to include product engineering to help define service-
level agreements and objectives (SLAs and SLOs) of the eventual
production system.

Level 3 data—For themost part consistent with Level 2; in general,
the previous level review can elucidate potential gaps in data coverage
and robustness to be addressed in the subsequent level. However, for
test suites developed at this stage, it is useful to define dedicated
subsets of the experiment data as default testing sources, aswell as set
up mock data for specific functionalities and scenarios to be tested.

Level 3 review—Teammates from applied AI and engineering are
brought into the review to focus on sound software practices, inter-
faces and documentation for future development, and version control
for models and datasets. There are likely domain- or organization-
specific data management considerations going forward that this

review should point out—e.g. standards for data tracking and com-
pliance in healthcare11.

Level 4—Proof of Concept (PoC) development. This stage is the seed
of application-driven development; for many organizations this is the
first touch-point with product managers and stakeholders beyond the
R&D group. Thus TRL Cards and requirements documentation are
instrumental in communicating theproject status andonboarding new
people. The aim is to demonstrate the technology in a real scenario:
quick proof-of-concept examples are developed to explore candidate
application areas and communicate the quantitative and qualitative
results. It is essential to use real and representative data for these
potential applications. Thus data engineering for the PoC largely
involves scaling up the data collection and processing from Level 1,
whichmay include collecting new data or processing all available data
using scaled experiment pipelines from Level 3. In some scenarios,
therewill be newdatasets brought in for the PoC, for example, froman
external research partner as a means of validation. Hand-in-hand with
the evolution from sample to real data, the experimentmetrics should
evolve from ML research to the applied setting: proof-of-concept
evaluations should quantify model and algorithm performance (e.g.,
precision and recall and various data splits), computational costs (e.g.,
CPU vs. GPU runtimes), and also metrics that are more relevant to the
eventual end-user (e.g., number of false positives in the top-N pre-
dictions of a recommender system). We find this PoC exploration
reveals specific differences between clean and controlled research
data versus noisy and stochastic real-world data. The issues can be
readily identified because of the well-defined distinctions between
those development stages in MLTRL, and then targeted for further
development.

AI ethics processes vary across organizations, but all should
engage in ethics conversations at this stage, including ethics of data
collection, and the potential of any harm or discriminatory impacts
due to the model (as the AI capabilities and datasets are known).
MLTRL requires ethics considerations to be reported on TRL Cards at
all stages, which generally link to an extended ethics checklist. The key
decision point here is to push onward with application development or

Fig. 3 | In the left diagramwe show a discovery switchback (dashed) from3 to 2,
and an embedded switchback (solid) from 4 to 2. The difference is the former is
circumstantial while the latter is predefined in the process. The other embedded
switchback we define in the main MLTRL process is from level 9 to 4, shown in
Fig. 4.While it is true that themajority ofMLprojects start at a reasonable readiness
out of the box, e.g. level 4, this can make it challenging and problematic to

switchback to R& D levels that the team have not encountered and may not be
equipped for. In the right diagram we show a common review switchback from
Level 5 to 4 (staying in the prototyping phase (orange)), and a switchback (faded)
that should not be implemented because the prior level was not explicitly done;
level 2 is squarely in the research pipeline (red).

Article https://doi.org/10.1038/s41467-022-33128-9

Nature Communications |         (2022) 13:6039 4



not. It is common topauseprojects thatpass Level 4 review,waiting for
a better time to dedicate resources, and/or pull the technology into a
different project.

Level 4 data—Unlike the previous stages, having real-world and
representative data is critical for the PoC; even with methods for
verifying that data distributions in synthetic data reliably mirror
those of real data, sufficient confidence in the technology must be
achieved with real-world data of the use-case. Further, one must
consider how to obtain high-quality and consistent data required
for the future model inference: generation of the data pipeline PoC
that will resemble the future inference pipeline that will take data
from intended sources, transform it into features, and send it to the
model for inference.

Level 4 review—Demonstrate the utility towards one or more
practical applications (each with multiple datasets), taking care to
communicate assumptions and limitations, and again reviewing data-
readiness: evaluating the real-world data for quality, validity, and
availability. The review also evaluates security and privacy considera-
tions—defining these in the requirements document with risk quanti-
fication is a useful mechanism for mitigating potential issues
(discussed further in the Methods section).

Level 5—Machine learning "capability”. At this stage the technol-
ogy is more than an isolated model or algorithm, it is a specific
capability. For instance, producing depth images from stereo vision
sensors on a mobile robot is a real-world capability beyond the
isolated ML technique of self-supervised learning for RGB stereo
disparity estimation. In many organizations, this represents a
technology transition or handoff from R&D to productization.
MLTRL makes this transition explicit, evolving the requisite work,
guiding documentation, objectives and metrics, and team; indeed,
without MLTRL it is common for this stage to be erroneously leaped
completely, as shown in Fig. 4. An interdisciplinary working group is

defined, as we start developing the technology in the context of a
larger real-world process—i.e., transitioning the model or algorithm
from an isolated solution to a module of a larger application. Just as
the ML technology should no longer be owned entirely by ML
experts, steps have been taken to share the technology with others
in the organization via demos, example scripts, and/or an API; the
knowledge and expertise cannot remain within the R&D team,
let alone an individual ML developer. Graduation from Level
5 should be difficult, as it signifies the dedication of resources to
push thisML technology through productization. This transition is a
common challenge in deep-tech, sometimes referred to as "the
valley of death” because project managers and decision-makers
struggle to allocate resources and align technology roadmaps to
effectively move to Levels 6, 7, and onward. MLTRL directly
addresses this challenge by stepping through the technology tran-
sition or handoff explicitly.

Level 5 data—For the most part consistent with Level 4. However,
considerations need to be taken for scaling of data pipelines: there will
soon be more engineers accessing the existing data and adding more,
and the data will be getting much more use, including automated
testing in later levels. With this scaling can come challenges with data
governance. Thedata pipelines likelydonotmirror the structureof the
teams or broader organization. This can result in data silos, duplica-
tions, unclear responsibilities, and missing control of data over its
entire lifecycle. These challenges and several approaches to data
governance (planning and control, organizational, and risk-based) are
detailed in Janssen et al.8.

Level 5 review—The verification andvalidation (V&V)measures and
steps defined in earlier R&D stages (namely Level 2) must all be com-
pleted by now, and the product-driven requirements (and corre-
sponding V&V) are drafted at this stage. We thoroughly review them
here andmake sure there is stakeholder alignment (at the first possible
step of productization, well ahead of deployment).

Fig. 4 | Most ML/AI projects live at levels 3–9 of MLTRL, not concerned with
fundamental R&D—that is, completely using existing methods and imple-
mentations, and even pretrained models. In the left diagram (a subset of the
Fig. 1 pipeline, same colors), the arrows showa commondevelopment patternwith
MLTRL in the industry): projects go back to the ML toolbox to develop new fea-
tures (dashed line), and frequent, incremental improvements are often a practice
of jumping back a couple of levels to Level 7 (which is the main systems integra-
tions stage). At Levels 7 and 8we stress the need for tests that run use-case-specific
critical scenarios and data-slices, which are highlighted by a proper risk-
quantification matrix78. Reviews at these Levels commonly catch gaps or oversight
in the test and validation scenarios, resulting in frequent cycles back to Level 7

from 8. Cycling back to previous lower levels is not just a late-stage mechanism in
MLTRL, but rather "switchbacks'' occur throughout the process. Cycling back to
Level 7 from 8 for more tests is an example of a review switchback, while the solid
line from Level 9 to 7 is an embedded switchback where MLTRL defines certain
conditions that require cycling back levels—seemore in the “Methods” section and
throughout the text. In the right diagram, we show themore common approach in
the industry (without using our framework), which skips essential technology
transition stages (gray)—ML Engineers push straight through to deployment,
ignoring important productization and systems integration factors. This will be
discussed in more detail in the “Methods” section.
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Level 6—Application development. Themain work here is significant
softwareengineering tobring the codeup toproduct-caliber: This code
will be deployed to users and thus needs to follow precise specifica-
tions, have comprehensive test coverage, well-defined APIs, etc. The
resulting ML modules should be robustified towards one or more
target use-cases. If those target use-cases call for model explanations,
the methods need to be built and validated alongside the ML model,
and tested for their efficacy in faithfully interpreting the model’s
decisions—crucially, this needs to be in the context of downstream
tasks and the end-users, as there is often a gap between ML explain-
ability that serves ML engineers rather than external stakeholders12.
Similarly, we need to develop the ML modules with known data chal-
lenges in mind, specifically to check the robustness of the model (and
broader pipeline) to changes in the data distribution between devel-
opment and deployment.

The deployment setting(s) should be addressed thoroughly in the
product requirements document, as ML serving (or deploying) is an
overloaded term that needs careful consideration. First, there are two
main types: internal, as APIs for experiments and other usages mainly
bydata scienceandMLteams, andexternal,meaning anMLmodel that
is embeddedor consumedwithin a real applicationwith real users. The
serving constraints vary significantly when considering cloud deploy-
ment vs on-premise or hybrid, batch or streaming, open-source solu-
tion or containerized executable, etc. Even more, the data at
deployment may be limited due to compliance, or we may only have
access to encrypted data sources, some of which may only be acces-
sible locally—these scenarios may call for advanced ML approaches
such as federated learning13 and other privacy-oriented ML14. And
depending on the application, an ML model may not be deployable
without restrictions; this typically means being embedded in a rules
engine workflow where the ML model acts like an advisor that

discovers edge cases in rules. These deployment factors are hardly
considered in model and algorithm development despite their sig-
nificant influence on modeling and algorithmic choices; that said,
hardware choices typically are considered early on, such as GPU versus
edge devices. It is crucial to make these systems decisions at Level 6—
not too early that serving scenarios and requirements are uncertain,
and not too late that corresponding changes to model or application
development risk deployment delays or failures. This marks a key
decision for the project lifecycle, as this expensiveML deployment risk
is common without MLTRL (see Fig. 4).

Level 6 data—Additional data should be collected and oper-
ationalized at this stage towards robustifying the ML models, algo-
rithms, and surrounding components. These include adversarial
examples to check local robustness15, semantically equivalent pertur-
bations to check the consistency of the model with respect to domain
assumptions16,17, and collecting data from different sources and
checking how well the trained model generalizes to them. These
considerations are even more vital in the challenging deployment
domains mentioned above with limited data access.

Level 6 review—Focus is on the code quality, the set of newly
defined product requirements, system SLA and SLO requirements,
data pipelines spec, and an AI ethics revisit now that we are closer to
a real-world use-case. In particular, regulatory compliance is man-
dated for this gated review; the data privacy and security laws are
changing rapidly, and missteps with compliance can make or break
the project.

Level 7—Integrations. For integrating the technology into existing
production systems, we recommend the working group has a balance
of infrastructure engineers and applied AI engineers—this stage of
development is vulnerable to latent model assumptions and failure

Fig. 5 | Computer vision pipeline for an automated recycling application (a),
which contains multiple ML models, user input, and image data from various
sources. Complicated logic such as this canmask MLmodel performance lags and
failures, and also emphasized the need for R& D-to-product handoff described in

MLTRL. Additional emphasis is placed on ML tests that consider the mix of real-
world data with user annotations (b, right) and synthetic data generated by Unity
AI's Perception tool and structured domain randomization (b, left).
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modes, and as such cannot be safely developed solely by software
engineers. Important tools for them to build together include:

• Tests that run use-case-specific critical scenarios and data-slices
—a proper risk-quantification table will highlight these.

• A "golden dataset” should be defined to baseline the perfor-
mance of each model and succession of models—see the com-
puter vision app example in Fig. 5—for use in the continuous
integration and deployment (CI/CD) tests.

• Metamorphic testing: A software engineering methodology for
testing a specific set of relations between the outputs ofmultiple
inputs. When integrating ML modules into larger systems, a
codified list of metamorphic relations18 can provide valuable
verification and validation measures and steps.

• Data intervention tests that seek data bugs at various points in
the pipelines, downstream to measure the potential effects of
data processing and ML on consumers or users of that data, as
well as upstream at data ingestion or creation. Rather than using
model performance as a proxy for data quality, it is crucial to use
intervention tests that instead catch data errors with mechan-
isms specific to data validation.

These tests in particular help mitigate underspecification in ML
pipelines, a key obstacle to reliably training models that behave as
expected in deployment19. On the note of reliability, it is important that
quality assurance engineers (QA) play a key role here and through
Level 9, overseeing data processes to ensure privacy and security, and
covering audits for downstream accountability of AI methods.

Level 7 data—In addition to the data for test suites discussed
above, this level calls for QA to prioritize data governance: how data is
obtained, managed, used, and secured by the organization. This was
earlier suggested in level 5 (in order to preempt related technical debt)
and is essential here at the main junction for integration, which may
create additional governance challenges in light of downstreameffects
and consumers.

Level 7 review—The review should focus on the data pipelines and
test suites; a scorecard like theMLTestingRubric20 is useful. Thegroup
should also emphasize ethical considerations at this stage, as theymay
be more adequately addressed now (where there are many test suites
put into place) rather than close to shipping later.

Level 8—Mission-ready. The technology is demonstrated to work in
its final form and under expected conditions. There should be
additional tests implemented at this stage covering deployment
aspects, notably A/B tests, blue/green deployment tests, shadow
testing, and canary testing, which enables proactive and gradual
testing for changing ML methods and data. Ahead of deployment,
the CI/CD system should be ready to regularly stress test the overall
system and ML components. In practice, problems stemming from
real-world data are impossible to anticipate and design for—an
upstream data provider could change formats unexpectedly or a
physical event could cause the customer behavior to change. Run-
ning models in shadow mode for a period of time would help stress
test the infrastructure and evaluate how susceptible the ML mod-
el(s) will be to performance regressions caused by data. We observe
that ML systems with data-oriented architectures are more readily
tested in this manner, and better surface data quality issues, data
drifts, and concept drifts—this is discussed later in the Beyond
Software Engineering section. To close this stage, the key decision is
go or no-go for deployment, and when.

Level 8 data—If not already in place, there absolutely needs to be
mechanisms for automatically logging data distributions alongside
model performance once deployed.

Level 8 review—A diligent walkthrough of every technical and
product requirement, showing the corresponding validations, and the
review panel is representative of the full slate of stakeholders.

Level 9—Deployment. In deploying AI andML technologies, there is a
significant need to monitor the current version and explicit con-
siderations towards improving the next version. For instance, perfor-
mance degradation can be hidden and critical, and feature
improvements often bring unintended consequences and constraints.
Thus at this level, the focus is on maintenance engineering—i.e.,
methods and pipelines for ML monitoring and updating. Monitoring
for data quality, concept drift, and data drift is crucial; no AI system
without thorough tests for these can reliably be deployed. By the same
token, there must be automated evaluation and reporting—if actuals21

are available, continuous evaluation should be enabled, but in many
cases, actuals come with a delay, so it is essential to record model
outputs to allow for efficient evaluation after the fact. To these ends,
the ML pipeline should be instrumented to log system metadata,
model metadata, and data itself.

Monitoring for data quality issues and data drifts is crucial to
catch deviations in model behavior, particularly those that are non-
obvious in the model or product end-performance. Data logging is
unique in the context of ML systems: data logs should capture sta-
tistical properties of input features and model predictions, and
capture their anomalies. With monitoring for data, concept, and
model drifts, the logs are to be sent to the relevant systems, applied,
and research engineers. The latter is often non-trivial, as the model
server is not ideal for model "observability” because it does not
necessarily have the right data points to link the complex layers
needed to analyze and debug models. To this end, MLTRL requires
the drift tests to be implemented at stages well ahead of deployment,
earlier than standard practice. Again we advocate for data-first
architectures rather than the software industry-standard design by
services (discussed later), which aids in surfacing and logging the
relevant data types and slices when monitoring AI systems. For
retraining and improving models, monitoring must be enabled to
catch training-serving skew and let the team know when to retrain.
Towards model improvements, adding or modifying features can
often have unintended consequences, such as introducing latencies
or even bias. To mitigate these risks, MLTRL has an embedded
switchback here: any component ormodule changes to the deployed
versionmust cycle back to Level 7 (integrations stage) or earlier—see
Fig. 4. Additionally, for quality ML products, we stress a defined
communication path for user feedback without roadblocks to R&D;
we encourage real-world feedback all the way to research, providing
valuable problem constraints and perspectives.

Level 9 data—Proper mechanisms for logging and inspecting data
(alongsidemodels) is critical for deploying reliable AI andML—systems
that learn on data have unique monitoring requirements (detailed
above). In addition to the infrastructure and test suites covering data
and environment shifts, it’s important for productmanagers and other
owners to be on top of data policy shifts in domains such as finance
and healthcare.

Level 9 review—The review at this stage is unique, as it also helps in
lifecycle management: at a regular cadence that depends on the
deployed system and domain of use, owners and other stakeholders
are to revisit this review and recommend switchbacks if needed (dis-
cussed in the Methods section). This additional oversight at deploy-
ment is shown to help define regimented release cycles of updated
versions, and provide another "eye” check for stale model perfor-
mance or other system abnormalities.

NoticeMLTRL is defined as stages or levels, yet much of the value
in practice is realized in the transitions:MLTRL enables teams tomove
from one level to the next reliably and efficiently and provides a guide
for how teams and objectives evolve with the progressing technology.

Use-cases
MLTRL is designed to apply to many real-world use-cases involving
data and ML, from simple regression models used for predictive
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modeling energydemandor anomalydetection indata centers, to real-
time modeling in rideshare applications and motion planning in
warehouse robotics. For simple use-cases MLTRL may be overkill, and
a subset may suffice—for instance, model cards as demonstrated by
Google for basic image classification. Yet this is a fine line, as the same
cards-only approach in the popular "Huggingface” codebases is too
simplistic for the language models they represent, deployed in
domains that carry significant consequences. MLTRL becomes more
valuable with more complex, larger systems and environments, espe-
cially in risk-averse domains.

In this section, we illustrateMLTRL in several real use-cases froma
diverse array of domains. In each use-case, we first outline the specific
challenges faced in that domain, then move on to demonstrate how
these challenges are addressed in theMLTRL framework—highlighting
the specific levels that deal with each challenge. Moreover, for each
use-case we provide a step-by-step, level-by-level walk-through of how
MLTRL is applied, thus outlining in concrete, real-world settings how
the MLTRL framework should be utilized.

Human–machine visual inspection. While most ML projects begin
with a specific task and/or dataset, there are many that originate inML
theory without any target application—i.e., projects starting MLTRL at
level 0 or 1. These projects nicely demonstrate the utility of MLTRL
built-in switchbacks, bifurcating paths, and iteration with domain
experts. An example we discuss here is a novel approach to repre-
senting data in generative visionmodels fromNaud and Lavin22, which
was then developed into state-of-the-art unsupervised anomaly
detection, and targeted for two human-machine visual inspection
applications: First, industrial anomaly detection, notably in precision
manufacturing, to identify potential errors for human-expert manual
inspection. Second, using the model to improve the accuracy and
efficiency of neuropathology, the microscopic examination of neuro-
surgical specimens for cancerous tissue. In these human-machine
teaming use-cases there are specific challenges impeding practical,
reliable use:

• Hidden feedback loops can be common and problematic in real-
world systems influencing their own training data: over time the
behaviorof usersmayevolve to selectdata inputs they prefer for
the specific AI system, representing some skew from the training
data. In this neuropathology case, selecting whole-slide images
that are uniquely difficult for manual inspection, or even biased
by that individual user. Similarly, we see underlying healthcare
processes can act as hidden confounders, resulting in unreliable
decision support tools23.

• Model availability can be limited in many deployment settings:
for example, on-premises deployments (common in privacy-
preserving domains like healthcare and banking), edge deploy-
ments (common in industrial use-cases such as manufacturing
and agriculture), or from the infrastructure’s inability to scale to
the volume of requests. This can severely limit the team’s ability
to monitor, debug, and improve deployed models.

• Uncertainty estimation is valuable in many AI scenarios, yet not
straightforward to implement in practice. This is further com-
plicated with multiple data sources and users, each injecting
generally unknown amounts of noise and uncertainties. In
medical applications it is of critical importance, to provide
measures of confidence and sensitivity, and for AI researchers
through end-users. In anomaly detection, various uncertainty
measures can help calibrate the false-positive versus false-
negative rates, which can be very domain specific.

• Costs of edge cases can be significant, sometimes risking
expensive machine downtime or medical failures. This is exa-
cerbated in anomaly detection anomalies are by definition rare
so they can be difficult to train for, especially for the anomalies
that are completely unseen until they arise in the wild.

• End-user trust can be difficult to achieve, often preventing the
adoption of ML applications, particularly in the healthcare
domain and other highly regulated industries.

These and additional ML challenges such as data privacy and
interpretability can inhibit ML adoption in clinical practice and
industrial settings but can be mitigated with MLTRL processes. We’ll
describe how in the contextof the ref. 22 example,whichbegan at level
0 with theoretical ML work onmanifold geometries, and at level 5 was
directed towards specialized human-machine teaming applications
utilizing the same ML method under-the-hood.

• Levels 0–1—From open-ended exploration of data-
representation properties in various Riemmanian manifold
curvatures, we derived from first principles and empirically
identified a property with hyperbolic manifolds: when used as a
latent space for embedding data without labels, the geometry
organizes the data by its implicit hierarchical structure.
Unsupervised computer vision was identified in reviews as a
promising direction for proof-of-principle work.

• Level 2—One approach for validating the earlier theoretical
developments was to generate synthetic data to isolate very
specific features in data we would expect represented in the
latent manifold. The results showed promise for anomaly
detection—using the latent representation of data to auto-
matically identify images that are out-of-the-ordinary (anom-
alous), and also using the manifold to inspect how they are
semantically different. Further, starting with an implicitly
probabilisticmodeling approach implied uncertainty estimation
could be a valuable feature downstream. This made the level 2
key decision point clear: proceed with appliedMLdevelopment.

• Levels 3–5—Proof-of-concept development and reviews demon-
strated promise for several commercial applications relevant to
the business, and also highlighted the need for several key fea-
tures (defined as R&D and product requirements): interpret-
ability (towards end-user trust), uncertainty quantification (to
show confidence scores), and human-in-the-loop (for domain
expertise). Without the MLTRL PoC steps and review processes,
these features can often be delayed until beta testing or
overlooked completely—for example, the failures of applying
IBM Watson in medical applications24. For this technology, the
applications to develop towards are anomaly detection in
histopathology and manufacturing, specifically inspecting
whole-slide images of neural tissue, and detecting defects in
metallic surfaces, respectively. From the systems perspective,
we suggest quantifying the uncertainties of components and
propagating them through the system,which can improve safety
and trust. Probabilistic ML methods, rooted in Bayesian
probability theory, provide a principled approach to represent-
ing and manipulating uncertainty about models and
predictions25. For this reason, we advocate strongly for prob-
abilistic models and algorithms in AI systems. In this machine
vision example, the MLTRL technical requirements specifically
called for a probabilistic generative model to readily quantify
various types of uncertainties and propagate them forward to
the visualization component of the pipeline, and the product
requirements called for the downstream confidence and
sensitivity measures to be exposed to the end-user. Component
uncertainties must be assembled in a principled way to yield a
meaningful measure of overall system uncertainty, based on
which safe decisions can be made26. See the “Methods” section
for more on uncertainty in AI systems. The early checks for data
management and governance proved valuable here, as the
application areas dealt with highly sensitive data that would
significantly influence the design of data pipelines and test
suites. In both the neuropathology and manufacturing
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applications, the data management checks also raised concerns
about hidden feedback loops, where users may unintentionally
skew the data inputs when using the anomaly detection models
in practice, for instance biasing the data towards specific subsets
they subjectively need help with. Incorporating domain experts
this early in the project lifecycle helped inform verification and
validation steps to help be robust to the hidden feedback loops.
Not to mention their input guided us towards user-centric
metrics for performance, which can often skew fromMLmetrics
in important ways—for instance, the typical acceptance ratio for
false positives versus false negatives does not apply to select
edge cases, for which our hierarchical anomaly classification
scheme was useful22. From prior reviews and TRL card
documentation, we also identified the value of synthetic data
generation in application development: anomalies are by
definition rare so they are hard to come by in real datasets,
especially with evolving environments in deployment settings,
so the ability to generate synthetic datasets for anomaly
detection can accelerate the levels 6–9 pipeline, and help ensure
more reliable models in the wild.

• Level 6 (medical)—The medical inspection application experi-
enced a bifurcation with product work proceeding while addi-
tional R&D was desired to explore improved data processing
methods while engaging with clinicians andmedical researchers
for feedback. Proceeding through the levels in a non-linear, non-
monotonicway is common inMLTRL and encouragedby various
switchback mechanisms (detailed in the “Methods” section).
These practices—intentional switchbacks, frequent engagement
with domain experts and users—can help mitigate methodolo-
gical flaws and underlying biases that are common when
applying ML to clinical applications. For instance, recent work
by Roberts et al.27 investigated 2122 studies applying ML to
COVID-19 use-cases, finding that none of the models are
sufficient for clinical use due to methodological flaws and/or
underlying biases. They go on to give many recommendations—
somewe’vediscussed in the context ofMLTRL, andmore—which
should be reviewed for higher quality medical-ML models and
documentation.

• Level 6–9 (manufacturing)—Overall these stages proceeded reg-
ularly and efficiently for the defect detection product. MLTRL’s
embedded switchback from level 9 to 4 proved particularly
useful in this lifecycle, both for incorporating feedback from the
field and for updatingwith researchprogress. On the former, the
data distribution shifts from one deployment setting to another
significantly affected false-positive versus false-negative calibra-
tions, so this was added as a feature to the CI/CD pipelines. On
the latter, the built-in touch points for real-world feedback and
data into the continued ML research provided valuable
constraints to help guide research, and productmanagers could
readily understand what capabilities could be available for
product integration and when (readily communicated with TRL
Cards)—for instance, later adding support for video-based
inspection for defects, and tooling for end-users to reason
about uncertainty estimates (which helps establish trust).

• Level 7–9 (medical)—For productization the "neuropathology
copilot”was handed off to a partner pharmaceutical company
to integrate into their existing software systems. The MLTRL
documentation and communication streamlined the tech-
nology transfer, which can often be a time-consumingmanual
process. If not pursuing this path, the product would’ve likely
faced many of the medical-ML deployment challenges with
model availability and data access; MLTRL cannot overcome
the technical challenges of deploying on-premises, but the
manifestation of those challenges as performance regres-
sions, data shifts, privacy and ethics concerns, etc. can be

mitigated by the system-level checks and strategies MLTRL
puts forth.

Computer vision with real and synthetic data. Advancements in
physics engines and graphics processing have advanced AI environ-
ment and data-generation capabilities, putting increased emphasis on
transitioning models across the simulation-to-reality gap28–30. To
develop a computer vision application for automated recycling, we
leveraged the Unity Perception31 package, a toolkit for generating
large-scale datasets for perception-based ML training and validation.
Weproduced synthetic images to complement real-world data sources
(Fig. 5). This application exemplifies three important challenges in ML
product development that MLTRL helps overcome:

• Multiple and disparate data sources are common in deployedML
pipelines yet often ignored in R&D. For instance, upstream data
providers can change formats unexpectedly, or a physical event
could cause the customer behavior to change. It is nearly
impossible to anticipate and design for all potential problems
with real-world data and deployment. This computer vision
system implemented pipelines and extended test suites to cover
open-source benchmark data, real user data, and synthetic data.

• Hidden performance degradation can be challenging to detect
and debug in ML systems because gradual changes in perfor-
mancemay not be immediately visible. Common reasons for this
challenge are that theMLcomponentmaybeone step in a series.
Additionally, local/isolated changes to an ML component’s per-
formance may not directly affect the observed downstream
performance. We can see both issues in the illustrated logic
diagram for the automated recycling app (Fig. 5). A slight
degradation in the initial CVmodelmay not heavily influence the
following user input. However, when an uncommon input image
appears in the future, the app fails altogether.

• Model usage requirements can make or break an ML product. For
example, theNetflix "$1MPrize” solutionwasnever fullydeployed
because of significant engineering costs in real-world scenarios
(netflixtechblog.com/netflix-recommendations-beyond-the-5-
stars-part-1). For example, engineering teamsmust communicate
memory usage, compute power requirements, hardware avail-
ability, network privacy, and latency to the ML teams. ML teams
often only understand the statistics orML theory behind amodel
but not the system requirements or how it scales.

We next elucidate these challenges and how MLTRL helps over-
come them in the context of this project’s lifecycle. This project started
at level 4, using largely existing ML methods with a target use case.
Specifically, the computer vision (CV) model for object recognition
and classificationwasoff-the-shelf, allowing us to bypass levels 0 and 1.
Similarly, the synthetic data generationmethodusedUnity Perception,
a well-established open-source project. Additionally, the previous
project established model training and data pipelines for production,
allowing us to bypass level 3.

• Level 4—Though previous work allowed us to skip the earlier
levels, many challenges arise when combining ML elements that
were independently validated and developed. The MLTRL
prototype-caliber code checkpoint ensures that the existing
code components are validated and helps avoid poorly defined
borders and abstractions between components. ML pipelines
often grow out of glue code, and our regimented code
checkpoints motivate well-architected software that minimizes
these danger spots.

• Level 5—The problematic "valley of death”, mentioned earlier in
the level 5 definitions, is less prevalent in use-cases like this that
start at a higher MLTRL level with a specific product deliverable.
In this case, the product deliverable was a real-time object
recognition and classification of trash for a mobile recycling
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application. Still, this stage is critical for the requirements and
V&V transition. This stage mitigates failure risks due to the
disparate data sources integrated at various steps in this CV
system and accounted for the end-user compute constraints for
mobile computing. Specifically, the TRL cards from earlier
stages surfaced potential issues with imbalanced datasets and
the need for specific synthetic images. These considerations are
essential for the data readiness and testing of V&V in the
productization requirements. Data quality and availability issues
often present huge blockers because teams discover them too
late in the game. Data-readiness is one class of many example
issues teams face without MLTRL, as depicted in Fig. 4.

• Level 6—We were re-using a well-understood model and
deployment pipeline in this use-case, meaning our primary
challenge was around data reliability. For the problem of
recognizing and classifying trash, building a reliable data
source using only real data is almost impossible due to
diversity, class imbalance, and annotation challenges. There-
fore we chose to develop a synthetic data generator to create
training data. At this MLTRL level, we needed to ensure that
the synthetic data generator created sufficiently diverse data
and exposed the controls needed to alter the data distribution
in production. Therefore, we carefully exposed APIs using the
Unity Perception package, which allowed us to control
lighting, camera parameters, target and non-target object
placements and counts, and background textures. Addition-
ally, we ensured that the object labeling matched the real-
world annotator instructions and that output data formats
matched real-world counterparts. Lastly, we established a set
of statistical tests to compare synthetic and real-world data
distributions. The MLTRL checks ensured that we under-
stood, and in this case, adequately designed our data sources
to meet in-production requirements.

• Level 7—From the previous level’s R&D TRL cards and obser-
vations, we knew relatively early in productization that we
would need to assume bias for the real data sources due to
class imbalance and imperfect annotations. Therefore we
designed tests to monitor these in the deployed application.
MLTRL imposes these critical deployment tests well ahead of
deployment, where we can easily overlook ML-specific
failure modes.

• Level 8—As we suggested earlier, problems that stem from real-
world data are near impossible to anticipate and design for,
implying the need for level 8 mission-readiness preparations.
Given thatwewere generating synthetic images (with structured
domain randomization) to complement the real data,wecreated
tests for different data distribution shifts at multiple points in
the classification pipeline. We also implemented thorough
shadow tests ahead of deployment to evaluate how susceptible
the ML model(s) to performance regressions caused by data.
Additionally, we also implemented these as CI/CD tests over
various deployment scenarios (or mobile device computing
specifications). Without these fully covered, documented, and
automated, it wouldbe impossible topass the Level 8 review and
deploy the technology.

• Level 9—Post-deployment, the monitoring tests prescribed in
Levels 8 and 9, and the three main code quality checkpoints in
the MLTRL process help surface hidden performance degrada-
tion problems, common with complex pipelines of data flows
and various models. The switchbacks depicted in Fig. 4 are
typical in CV use-cases. For instance, miscalibrations in models
pre-trained on synthetic data and fine-tuned on newer real data
can be common yet difficult to catch. However, the level 7 to
4 switchback is designed precisely for these challenges and
product improvements.

Accelerating scientific discovery with massive particle physics
simulators. Computationalmodels and simulation are key to scientific
advances at all scales, from particle physics to material design and
drug discovery, to weather and climate science, and to cosmology32.
Many simulators model the forward evolution of a system (coinciding
with the arrowof time), such as the interaction of elementary particles,
diffusion of gasses, folding of proteins, or evolution of the universe on
the largest scale. The task of inference refers to finding initial condi-
tions or global parameters of such systems that can lead to some
observed data representing the final outcome of a simulation. In
probabilistic programming33, this inference task is performed by
defining prior distributions over any latent quantities of interest, and
obtaining posterior distributions over these latent quantities condi-
tioned on observed outcomes (for example, experimental data) using
the Bayes rule. This process, in effect, corresponds to inverting the
simulator such that we go from the outcomes toward the inputs that
caused the outcomes. In the "Etalumis” project34 ("simulate” spelled
backward), we are using probabilistic programmingmethods to invert
existing, large-scale simulators viaBayesian inference. Theproject is an
interdisciplinary collaboration of specialists in probabilistic machine
learning, particle physics, and high-performance computing, all
essential elements to achieve the project outcomes. Even more, it is a
multi-year project spanning multiple countries, companies, university
labs, and government research organizations, bringing significant
challenges in project management, technology coordination, and
validation. Aided by MLTRL, there were several key challenges to
overcome in this project that is common in scientific-ML projects:

• Integrating with legacy systems is common in scientific and
industrial use-cases, where ML methods are applied with exist-
ing sensor networks, infrastructure, and codebases. In this case,
particle physics domain experts at CERN are using the SHERPA
simulator35, a 1million-line codebase developedover the last two
decades. Rewriting the simulator for ML use-cases is infeasible
due to the codebase size and buried domain knowledge, and
new ML experts would need significant onboarding to gain a
working knowledge of the codebase. It is also common to work
with legacy data infrastructure, which can be poorly organized
for machine learning (let alone preprocessed and clean) and
unlikely to have followed best practices such as dataset
versioning.

• Coupling hardware and software architectures are non-trivial
when deploying ML at scale, as performance constraints are
often considered in deployment tests well after model and
algorithm development, not to mention the expertise is often
split across disjoint teams. This can be exacerbated in scientific-
MLwhen scaling to supercomputing infrastructure, andworking
withmassive datasets that can be in the terabytes and petabytes.

• Interpretability is often a desired feature yet difficult to deliver
and validate in practice. Particularly in scientificML applications
such as this, mechanisms and tooling for domain experts to
interpret predictions and models are key for usability (inte-
grating into workflows and building trust).

To this end, we will go through the MLTRL levels one by one,
demonstrating how they ensure the above scientificML challenges are
diligently addressed.

• Level 0—The theoretical developments leading to Etalumis are
immense and well discussed in ref. 34. In particular, the ML
theory and methods are in a relatively nascent area of ML and
mathematics, probabilistic programming. New territory can
present more challenges compared to well-traveled research
paths, for instance in computer vision with neural networks. It is
thus helpful to have a guiding framework when making a new
path in ML research, such as MLTRL where early reviews help
theoretical ML projects get legs.
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• Level 1–2—Running low-level experiments in simple testbeds is
generally straightforward when working with probabilistic
programming and simulation; in a sense, this easy iteration over
experiments is what PPL is designed for. It was additionally
helpful in this project to have rich data grounded in physical
constraints, allowing us to better isolatemodel behaviors (rather
than data assumptions and noise). The MLTRL requirements
documentation is particularly useful for the standard PPL
experimentation workflow: model, infer, criticize, repeat (or
Box’s loop)36. The evaluation step (i.e. criticizing the model) can
be more nuanced than checking summary statistics as in deep
learning and similar ML workflows. It is thus a useful practice to
write down the criticismmethods,metrics, and expected results
as verifications for specific research requirements, rather than
iterating over Box’s loop without a priori targets. Further,
because this research project had a specific target application
early in the process (the SHERPA simulator), the project timeline
benefited from recognizing simulator-integration constraints
upfront as requirements, not to mention data availability
concerns, which are often overlooked in early R&D levels. It
was additionally useful to have CERN scientists as domain
experts in the reviews at these R&D levels.

• Level 3—Systems development can be challenging with prob-
abilistic programming, again because it is relatively nascent and
muchof theout-of-the-box tools and infrastructure are not there
as in most ML and deep learning. Here in particular there’s a
novel (unproven) approach for systems integration: a probabil-
istic programming execution protocol was developed to reroute
random number draws in the stochastic simulator codebase
(SHERPA) to the probabilistic programming system, thus
enabling the system to control stochastic choices in SHERPA
and run inference on its execution traces, all while keeping the
legacy codebase intact! A more invasive method that modifies
SHERPA would not have been acceptable. If it were not for
MLTRL forcing systems considerations this early in the Etalumis
project lifecycle, this could have been an insurmountable hurdle
later when multiple codebases and infrastructures come into
play. By the same token, systems planning here helped enable
the significant HPC scaling later: the team defined the need for
HPC support well ahead of actually running HPC, in order to
build the prototype code in away that would readilymap toHPC
(in addition to local or cloud CPU and GPU). The data
engineering challenges in this system’s development none-
theless persist—that is, data pipelines and APIs that can integrate
various sources and infrastructures, and normalize data from
various databases—although MLTRL helps consider these at an
earlier stage that can help inform architecture design.

• Level 4—The natural "embedded switchback” from Level 4 to 2
(see the “Methods” section) provided an efficient path toward
developing an improved, amortized inference method–i.e.,
using a computationally expensive deep learning-based
inference algorithm to train only once, in order to then do
fast, repeated inference in the SHERPA model. Leveraging
cyclic R&D methods, the Etalumis project could iteratively
improve inference methods without stalling the broader
system development, ultimately producing the largest scale
posterior inference in a Turing-complete probabilistic pro-
gramming system. Achieving this scale through iterative R&D
along the main project lifecycle was additionally enabled by
working with National Energy Research Scientific Computing
(NERSC) engineers and their Cori supercomputer to progres-
sively scale smaller R&D tests to the goal supercomputing
deployment scenario. Typical ML workflows that follow
simple linear progressions37,38 would not enable ramping up
in this fashion, and can actually prevent scaling R&D to

production due to a lack of systems engineering processes
(like MLTRL) connecting research to deployment.

• Level 5—Multi-org international collaborations can be riddled
with communication and teamwork issues, in particular at this
pivotal stage where teams transition from R&D to application
and product development. First, MLTRL as a lingua franca was
key to the teameffort in bringing Etalumis proof-of-concept into
the larger effort of applying it to massive high-energy physics
simulators. It was also critical at this stage to clearly commu-
nicate end-user requirements across the various teams and
organizations, which must be defined in MLTRL requirements
docs with V&V measures—the essential science-user require-
ments were mainly for model and prediction interpretability,
uncertainty estimation, and code usability. If there are concerns
over these features, MLTRL switchbacks can help to quickly
cycle back and improve modeling choices in a transparent,
efficient way— generally, in ML projects, these fundamental
issues with usability are caught too late, even after deployment.
In the probabilistic generative model setting, we’ve defined in
Etalumis, Bayesian inference gives results that are interpretable
because they include exact locations and processes in themodel
that are associated with each prediction. Working with ML
methods that are inherently interpretable, we are well-
positioned to deliver interpretable interfaces for the end-users
later in the project lifecycle.

• Level 6–9—The standard MLTRL protocol applies in these
application-to-deployment stages, with several Etalumis-specific
highlights. First, given the significant research contributions in
both probabilistic programming and scientificML, it’s important
to share the code publicly. The development and deployment of
the open-source code repository PPX (github.com/pyprob/ppx)
branched into a separateMLTRL path from the Etalumis path for
deployment at CERN. It’s useful to have systems engineering
enable a clean separation of requirements, deployments, etc.
when there are different development and product lifecycles
originating from a common parent project. For example, in this
case, it was useful to employ MLTRL switchbacks in the open-
sourcing process, isolated from the CERN application paths, in
order to add support for additional programming languages so
PPX can apply to more scientific simulators—both directions
benefited significantly from the data pipelines considerations
brought up levels earlier, where open-sourcing required
different data APIs and data transformations to enable broad
usability. Second, related to the open-source code deliverable
and the scientificMLuser requirements we noted above, the late
stages of MLTRL reviews include higher-level stakeholders and
specific end-users, yet again enforcing these scientific usability
requirements aremet. An example result of this in Etalumis is the
ability to output human-readable execution traces of the
SHERPA runs and inference, enabling never-before-possible
step-by-step interpretability of the black-box simulator.

The scientific ML perspective additionally brings to the forefront
an end-to-end data perspective that is pertinent in essentially all ML
use-cases: these systems are only useful to the extent they provide
comprehensive data analyses that integrate the data consumed and
generated in these workflows, from raw domain data to machine-
learned models. These data analyses drive reproducibility, explain-
ability, and experiment data understanding, which are critical
requirements in scientific endeavors and ML broadly.

Causal inference and ML in medicine. Understanding cause and
effect relationships are crucial for accurate and actionable decision-
making in many settings, from healthcare and epidemiology to eco-
nomics and government policy development. Unfortunately, standard
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machine learning algorithms can only find patterns and correlations in
data, and as correlation is not causation, their predictions cannot be
confidently used for understanding cause and effect. Indeed, relying
on correlations extracted from observational data to guide decision-
making can lead to embarrassing, costly, and even dangerous mis-
takes, such as concluding that asthma reduces pneumonia mortality
risk39 and that smoking reduces the risk of developing severe COVID-
1940. Fortunately, there has been much recent development in a field
known as a causal inference that can quantitatively make sense of
cause and effect from purely observational data41. The ability of causal
inference algorithms to quantify causal impact rests on a number of
important checks and assumptions—beyond those employed in stan-
dardmachine learning or purely statisticalmethodology—thatmust be
carefully deliberated over during their development and training.
These specific checks and assumptions are as follows:

• Specifying cause-and-effect relationships between relevant vari-
ables: One of themost important assumptions underlying causal
inference is the structure of the causal relations between quan-
tities of interest. The gold standard for determining causal
relations is to perform a randomized controlled trial, but inmost
cases, these cannot be employed due to ethical concerns, tech-
nological infeasibility, or prohibitive cost. In these situations,
domain experts have to be consulted to determine the causal
relationships. It is important in these situations to carefully
address the manner in which such domain knowledge was
extracted from experts, the number and diversity of experts
involved, the amount of consensus between experts, and so on.
The need for careful documentation of this knowledge and its
periodic review is made clear in the MLTRL framework, as we
shall see below.

• Identifiability: Another vital component of building causal
models is whether the causal question of interest is identifiable
from the causal structure specified for the model together with
observational (and sometimes experimental) data.

• Adjusting for and monitoring confounding bias: An important
aspect of causal model performance, not present in standard
machine learning algorithms, is confounding bias adjustment.
The standard approach is to employ propensity score
matching to remove such bias. However, the quality of bias
adjustment achieved in any specific instance with such
propensity-basedmatchingmethods needs to be checked and
documented, with alternate bias adjusting procedures
required if appropriate levels of bias adjustment are not
achieved42.

• Sensitivity analysis: As causal estimates are based on generally
untestable assumptions, such as observing all relevant con-
founders, it is vital to determine how sensitive the resulting
predictions are to potential violations of these assumptions.

• Consistency: It is crucial to understand if the learned causal
estimate provably converges to the true causal effect within the
limit of an infinite sample size. However, causal models cannot
be validated by standard held-out tests, but rather require
randomization or special data collection strategies to evaluate
their predictions43,44.

The MLTRL framework makes transparent the need to carefully
document and defends these assumptions, thus ensuring the safe and
robust creation, deployment, and maintenance of causal models. We
elucidate this with recent work by Richens et al.45, developing a causal
approach to computer-assisted diagnosis which outperforms previous
purely machine learning-based methods. To this end, we will go
through theMLTRL levels one by one, demonstrating how they ensure
the above specific checks and assumptions arenaturally accounted for.
This should provide a blueprint for how to employ theMLTRL levels in
other causal inference applications.

• Level 0—When initially facedwith a causal inference task, thefirst
step is always to understand the causal relationships between
relevant variables. For instance, in ref. 45, the first step toward
building the diagnostic model was specifying the causal rela-
tionships between the diverse set of risk factors, diseases, and
symptoms included in the model. To learn these relations,
doctors and healthcare professionals were consulted to employ
their expansive medical domain knowledge which was robustly
evaluated by additional independent groups of healthcare pro-
fessionals. TheMLTRL frameworkensured this issue is dealtwith
and documented correctly, as such knowledge is required to
progress from Level 0; failure to do this has plagued similar
healthcare AI projects46. The next step of any causal analysis is to
understand whether the causal question of interest is uniquely
identifiable from the causal structure specified for the model
together with observational and experimental data. In this
medical diagnosis example, identification was crucial to estab-
lish, as the causal question of interest, "would the observed
symptoms not be present had a specific disease been cured?”,
was highly non-trivial. Again, MLTRL ensures this vital aspect of
model building is carefully considered, as a mathematical proof
of identifiability would be required to graduate from Level 0.
With both the causal structure and identifiability result in hand,
one can progress to Level 1.

• Level 1—At this level, the goal is to take the estimand for the
identified causal question of interest and devise a way to esti-
mate it from data. To do this one will need efficient ways to
adjust for confounding bias. The standard approach is to employ
propensity score-based methods to remove such bias when the
target decision is binary, and use multi-stage ML models
adhering to the assumed causal structure47 for continuous
target decisions (and high-dimensional data in general). How-
ever, the quality of bias adjustment achieved in any specific
instance with propensity-based matching methods needs to be
checked and documented, with alternate bias adjusting proce-
dures required if appropriate levels of bias adjustment are not
achieved42. As above, MLTRL ensures transparency and adher-
ence to this important aspect of causal model development, as
without it a project cannot graduate from Level 1. Even more,
MLTRL ensures tests for confounding bias are developed early
on and maintained throughout later stages of deployment. Still,
in many cases, it is not possible to completely remove
confounding in the observed data. TRLCards offer a transparent
way to declare specific limitations of a causal ML method.

• Level 2—PoC-level tests for causalmodelsmust gobeyond thatof
typical ML models. As discussed above, to ensure the estimated
causal effects are robust to the assumptions required for their
derivation, sensitivity to these assumptions must be analyzed.
Such sensitivity analysis is often limited to R&D experiments or a
post-hoc feature of ML products. MLTRL on the other hand
requires this throughout the lifecycle as components of ML test
suites andgated reviews. In the caseof causalML, best practice is
to employ sensitivity analysis for this robustness check48.MLTRL
ensures this check is highlighted and adhered to, and no model
will end up graduating Level 2–let alone being deployed—unless
it is passed.

• Level 3—Coding best practices, as in general ML applications.
• Level 4–5—There are additional tests to consider when taking

causalmodels from research to production, in particular at Level
4—proof of concept demonstration in a real scenario. Con-
sistency, for example, is an important property of causal meth-
ods that informs us whether the method provably converges to
the true causal graph within the limit of infinite sample size.
Quantifying consistency in the test suite is critical when datasets
change from controlled laboratory settings to open-world, and
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when the application scales. And PoC validation steps are more
efficient with MLTRL because the process facilitates early spe-
cification of the evaluation metric for a causal model in Level 2.
Causal models cannot be validated by standard held-out tests,
but rather require randomization or special data collection
strategies to evaluate their predictions43,44. Any difficulty in
evaluating the model’s predictions will be caught early and
remedied.

• Level 6–9—With the causal ML components of this technology
developed reliably in the previous levels, the rest of the levels
developing this technology focused on general medical-ML
deployment challenges. For the most part, data governance,
privacy, and management that was detailed earlier in the
neuropathology MLTRL use-case, as well as the on-premises
deployment.

AI for open-source space sciences. The Cameras for Allsky Meteor
Surveillance (CAMS) project49, established in 2010 by NASA, uses
hundreds of off-the-shelf CCTV cameras to capture meteor activity in
the night sky. Initially, resident scientists would retrieve hard disks
containing video data captured each night and perform manual tri-
angulation of tracks or streaks of light in the night sky, and compute a
meteor’s trajectory, orbit, and light curve. Each solution was manually
classified as a meteor or not (i.e., planes, birds, clouds, etc.). In 2017, a
project run by the Frontier Development Lab50 (The NASA Frontier
Development Lab and partners open-source the code and data via the
SpaceML platform: spaceml.org), the AI accelerator for NASA and ESA,
aimed to automate the data processing pipeline and replicate the
scientists thought process to build an ML model that identifies
meteors in the CAMS project51,52. The data automation led to orders of
magnitude improvements in the operational efficiency of the system
and allowed new contributors and amateur astronomers to start con-
tributing to meteor sightings. Additionally, a novel web tool allowed
anybody anywhere to view the meteors detected the previous night.
The CAMS camera system has had a six-fold global expansion of the
data capture network, discovered ten new meteor showers, con-
tributed towards instrumental evidence of previously predicted
comets, and helped calculate parent bodies of various meteor show-
ers. CAMS utilized the MLTRL framework to progress as described:

• Level 1—Understanding the domain and data is a prerequisite for
any ML development. Extensive data exploration elucidated
visual differences between objects in the night sky such as
meteors, satellites, clouds, tail lights of planes, and light fromthe
eyes of cats peering into cameras, trees, and other tall objects
visible in the moonlight. This step helped (1) understand the
visual properties of meteors that later defined the ML model
architecture, and (2) mitigate the impact of data imbalance by
proactively developing domain-oriented strategies. The results
are well-documented on a datasheet associated with the TRL
card and discussed at the stage review. This MLTRL documenta-
tion forced us to consider data sharing and other privacy
concerns at this early conceptualization stage, which is certainly
relevant considering CAMS is for open-source and gathering
data from myriad sources.

• Level 2–3—The agile and non-monotonic (or non-linear) devel-
opment prescribed by MLTRL allowed the team to first develop
an approximate end-to-end pipeline that offered a path to ML
model deployment and quick turnaround time to incorporate
feedback from the regular gated reviews. Then, with relatively
quicker experimentation, the team could improve on the quality
of not just the ML model, but also scale up the systems
development simultaneously in a non-monotonic
development cycle.

• Level 4—With the initial pipeline in place, scalable training of
baselines and initial models on real challenging datasets ensued.

Throughout the levels, the MLTRL gated reviews were essential
for making efficient progress while ensuring robustness and
functionality that meets stakeholder needs. At this stage we
highlight specific advantages of the MLTRL review processes
that had an instrumental effect on the project's success:With the
required panel of mixed ML researchers and engineers, domain
scientists, and product managers, the stage 4 reviews stressed
the significance of numerical improvements and comparison to
existing baselines and helped identify and overcome issues with
data imbalance. The team likely would have overlooked these
approaches without the review from peers in diverse roles and
teams. In general, the evolving panel of reviewers at different
stages of the project was essential for covering a variety of ver-
ification and validation measures—from helping mitigate data
challenges to open-source code quality.

• Level 5—To complete this R&D-to-productization level, a novel
web tool called the NASA CAMS Meteor Shower Portal
(meteorshowers.seti.org) was created that allowed users to view
meteor shower activity from the previous night and verify
meteor predictions generated by the ML model. This app
development was valuable for A/B testing, validating detected
meteors and classifying new meteor showers with human–AI
interaction, and demonstrating real-world utility to stakeholders
in review.MLprocesseswithoutMLTRLmiss out on this valuable
development by overlooking the need for such a demo tool.

• Level 6—Application development was naturally driven by end-
user feedback from the web app in level 5—without MLTRL it’s
unlikely the team would be able to work with early productiza-
tion feedback. With almost real-time feedback coming in daily,
newer methods for improving the robustness of meteor
identification led to researching and developing a unique
augmentation technique, resulting in the state-of-the-art perfor-
mance of theMLmodel. Further application development led to
incorporating features that were in demand by users of the
NASA CAMSMeteor Shower Portal: including celestial reference
points through constellations, adding the ability to zoom in/out
and (un)cluster showers, and providing tooling for scientific
communication. The coordination of these features into a
product-caliber codebase resulted in the release of the NASA
CAMS Meteor Shower Portal 2.0 which was built by a team of
citizen scientists—again we found the specific checkpoints in the
MLTRL review were crucial for achieving these goals.

• Level 7—Integration was particularly challenging in two ways.
First, integrating the ML and data engineering deliverables with
the existing infrastructure and tools of the larger CAMS system,
which had started development years earlier with other teams in
partner organizations, required quantifiable progress for ver-
ifying the tech-readiness of MLmodels and modules. The use of
technology readiness levels provided a clear and consistent
metric for thematurity of theML and data technologies,making
for clear communication and efficient project integration.
Without MLTRL it is difficult to have a conversation, let alone
make progress, towards integrating ML/AI and data subsystems
and components. Second, integrating open-source contribu-
tions into the main ML subsystem was a significant challenge
alleviated with diligent verification and validation measures
from MLTRL, as well as quantifying robustness with ML testing
suites (using scoring measures like that of the ML Testing
Rubric20, and devising a checklist based on metamorphic
testing18).

• Level 8—CAMS, like many datasets in practice, consists of a
smaller labeled subset and a much larger unlabeled set. In an
attempt to additionally increase the robustness of the ML sub-
system ahead of "mission-readiness”, we looked to active
learning53,54 techniques to leverage the unlabeled data. Models
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using an initial version of this approach, where results of the
active learning provided "weak” labels, resulted in consumption
of the entire decade-long unlabeled data collected by CAMS and
slightly higher scores on deployment tests. Active learning
showed to be a promising feature and was switched back to level
7 for further development towards the nextdeployment version,
so as not to delay the rest of the project.

• Level 9—The ML components in CAMS require continual mon-
itoring for model and data drifts, such as changes in weather,
smoke, and cloud patterns that affect the view of the night sky.
The data drifts may also be specific to locations, such as fireflies
and bugs in CAMS Australia and New Zealand stations which
appear as false positives. The ML pipeline is largely automated
with CI/CD, runs regular regression tests, and production of
benchmarks. Manual intervention can be triggered when nee-
ded, such as sending low-confidence meteors for verification to
scientists in the CAMS project. The team also regularly releases
the code, models, and web tools on the open-source space
sciences and exploration ML toolbox, SpaceML (spaceml.org).
Through the SpaceML community and partner organizations,
CAMS continually improves with feature requests, debugging,
and improving data practices, while tracking progress with
standard software release cycles and MLTRL documentation.

Discussion
Beyond software engineering
Software engineering (SWE) practices vary significantly across
domains and industries. Some domains, such as medical applications,
aerospace, or autonomous vehicles rely on a highly rigorous devel-
opment process which is required by regulations. Other domains, for
example, advertising and e-commerce are not regulated and can
employ a lenient approach to development. ML development should
at minimum inherit the acceptable software engineering practices of
the domain. There are, however, several key areas where ML devel-
opment stands out from SWE, adding its own unique challenges which
even the most rigorous SWE practices are not able to overcome.

For instance, the behavior ofML systems is learned fromdata, not
specified directly in code. The data requirements aroundML (i.e., data
discovery, management, and monitoring) add significant complexity
not seen in other types of SWE. There are many benefits to using a
data-oriented architecture (DOA)46 with the data-first workflows and
management practices prescribed in MLTRL. DOA aims to make the
data flowing between elements of business logic more explicit and
accessible with a streaming-based architecture rather than the micro-
service architectures that are standard in software systems. One spe-
cific benefit of DOA is making data available and traceable by design,
which helps significantly in the ML logging challenges and data gov-
ernance needs we discussed in Levels 7–9. Moreover, MLTRL high-
lights data-related requirements along every step to ensure that the
development process considers data readiness and availability.

There are an array of ML-specific failure modes that must be
carefully addressed before ML algorithms are deployed. For example,
models become miscalibrated due to subtle data distributional shifts
in the deployment setting, resulting inmodels that aremore confident
in predictions than they should be. MLTRL helps define ML-specific
testing considerations (levels 5 and 7) to help surface ML-specific
failure modes early. ML opens up new threat vectors across the whole
deployment workflow that otherwise are not risks in software systems:
for example, a poisoning attack to contaminate the training phase of
ML systems, ormembership inference to see if a given data recordwas
part of themodel’s training. MLTRL considers these threat vectors and
suggests relevant risk identification during the prototyping and pro-
ductization phases. More generally, ML codebases have all the pro-
blems for regular code, plus ML-specific issues at the system level,
mainly as a consequence of added complexity and dynamism. The

resulting entanglement, for instance, implies that the SWE practice of
making isolated changes is often not feasible—Scully et al.55 refer to this
as the "changing anything changes everything” principle. Given this
consideration, typical SWE change-management is insufficient. Fur-
thermore, ML systems almost necessarily increase the technical debt;
package-level refactoring is generally sufficient for removing technical
debt in software systems, but this is not the case in ML systems.

These factors and others suggest that inherited software engi-
neering and management practices of a given domain are insufficient
for the successful development of robust and reliable ML systems. But
it is not trading off one for the other: MLTRL can be used in synergy
with the existing, industry-standard software engineering practices
such as agile56 and waterfall57 to handle unique challenges of ML
development. Because ML applications are a category of software, all
best practices of building and operating software should be extended
when possible to the ML application. Practices like version control,
comprehensive testing, continuous integration, and continuous
deployment are all applicable to ML development. MLTRL provides a
framework that helps extend SWE building and operating practices
that are acceptable in a given domain to tackle the unique challenges
of ML development.

Related works
A recent case study fromMicrosoft Research38 similarly identifies a few
themes describing how ML is not equal to software engineering, and
recommends a linear ML workflow with steps for data preparation
through modeling and deploying. They define an effective workflow
for isolated development of an ML model, but this approach does not
ensure the technology is actually improving in quality and robustness.
Their process should be repeated at progressive stages of develop-
ment in the broader ML and data technology lifecycle. If applied in the
MLTRL framework, the specific ingredients of the MLmodel workflow
—that is, people, software, tests, objectives, etc.—evolve over time and
subsequent stages as the technologies mature.

There exist many recommended workflows for specific ML
methods and areas of pipelines. For instance, a more iterative process
for Bayesian ML58 and even more specifically for probabilistic
programming36, a data mining process defined in 2000 that remains
widely used59, others for describing data iterations60, and
human–computer interaction cycles61. In these recommended work-
flows and others, there is an important distinction between their cycles
and "switchback” mechanisms in MLTRL. Their cycles suggest gener-
ically iterating over a data-modeling–evaluation–deployment process.
Switchbacks, on the other hand, are specific, purpose-driven work-
flows for dialing part(s) of a project to an earlier stage—this does not
simply mean going back and training the model on more data, but
rather switching back regresses the technology’s maturity level (e.g.
from level 5 to level 3) such that it must again fulfill the level-by-level
requirements, evaluations, and reviews. See the “Methods” section for
more details on MLTRL switchbacks. In general, iteration is an
important part of data, ML, and software processes. MLTRL is unique
from the other recommended processes in many ways, and perhaps
most importantly because it considersdataflows andMLmodels in the
context of larger systems. These isolatedprocesses (that are specific to
e.g. modeling in prototype development or data wrangling in appli-
cation development) are synergistic with MLTRL because they can be
used within each level of the larger lifecycle or framework. For exam-
ple, the Bayesian modeling processes36,58 we mentioned above are
really useful to guide developers of probabilistic ML approaches. But
there are important distinctions between executing these modeling
steps and cycles in a well-defined prototyping environment with
curated data and minimal responsibilities, versus a production envir-
onment riddled with sparse and noisy data, that interacts with the
physical world in non-obvious ways, and can carry expensive (even
hidden) consequences. MLTRL provides the necessary, holistic
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context and structure to use these and other development processes
reliably and responsibly.

Also related to our work, Google teams have proposed ML
testing recommendations20 and validated the data fed into ML
systems62. For NLP applications, typical ML testing practices strug-
gle to translate to real-world settings, often overestimating per-
formance capabilities. An effective way to address this is devising a
checklist of linguistic capabilities and test types, as in ref.
17–interestingly their test suite was inspired by metamorphic test-
ing, which we suggested earlier in Level 7 for testing systems AI
integrations. A survey by Paleyes et al.46 goes over numerous case
studies to discuss challenges in ML deployment. They similarly pay
special attention to the need for ethical considerations, end-user
trust, and extra security in ML deployments. On the latter point,
Kumar et al.63 provide a table thoroughly breaking down new threat
vectors across the whole ML deployment workflow (some of which
we mentioned above). These works, notably the ML security mea-
sures and the quantification of an ML test suite in a principled way—
i.e., that does not use misguided heuristics such as code coverage—
are valuable to include in any ML workflow including MLTRL, and
are synergistic with the framework we’ve described in this paper.
These analyses provide useful insights, but they do not provide a
holistic, regimented process for the full ML lifecycle from R&D
through deployment. An end-to-end approach is suggested by Raji
et al.64, but only for the specific task of auditing algorithms; com-
ponents of AI auditing are mentioned in Level 7, and covered
throughout the review processes.

Sculley et al.55 go into more ML debt topics such as undeclared
consumers and data dependencies and go on to recommend an ML
Testing Rubric as a production checklist20. For example, testing mod-
els by a canary process before serving them in production. This, along
with similar shadow testing we mentioned earlier, is common in
autonomous ML systems, notably robotics and autonomous vehicles.
They explicitly call out tests in four main areas (ML infrastructure,
model development, features and data, andmonitoring of runningML
systems), some of which we discussed earlier. For example, tests that
the training and serving features compute the same values; a model
may train on logged processes or user input, but is then served on a
live feed with different inputs. In addition to the Google ML Testing
Rubric, we advocate metamorphic testing: a SWE methodology for
testing a specific set of relations between the outputs of multiple
inputs. True to the checklists in the Google ML Testing Rubric and in
MLTRL, metamorphic testing for ML can have a codified list of meta-
morphic relations18.

In domains such as healthcare, there has been the introduction of
similar checklists for data readiness—for example, to ensure
regulatory-grade real-world-evidence (RWE) data quality65— yet these
are nascent and not yet widely accepted. Applying AI in healthcare has
led to developing guidance for regulatory protocol, which is still a
work in progress. Larson et al.66 provide a comprehensive analysis for
medical imaging and AI, arriving at several regulatory framework
recommendations that mirror what we outline as important measures
in MLTRL: e.g., detailed task elements such as pitfalls and limitations
(surfaced onTRLCards), clear definition of an algorithm relative to the
downstream task, defining the algorithm "capability” (Level 5), real-
world monitoring, and more.

D’amour et al.19 dive into the problem we noted earlier about
model miscalibration. They point to the trend in machine learning to
develop models relatively isolated from the downstream use and lar-
ger system, resulting in underspecification that handicaps practicalML
pipelines. This is largely problematic in deep learning pipelines, but we
have also noted this risk in the case of causal inference applications.
Suggested remedies include stress tests—empirical evaluations that
probe the model’s inductive biases on practically relevant dimensions
—and in general the methods we define in Level 7.

Limitations, responsibilities, and ethics
MLTRL has been developed, deployed, iterated, and validated in
myriad environments, as demonstrated by the previous examples and
many others. Nonetheless, we strongly suggest that MLTRL not be
viewed as a cure-all for machine learning systems engineering. Rather,
MLTRLprovidesmechanisms to better enableMLpractitioners, teams,
and stakeholders to be diligent and responsible with these technolo-
gies anddata. That is, one cannot implementMLTRL in anorganization
and turn a blind eye to the many data, ML, and integration challenges
we’ve discussed here. MLTRL is analogous to a pilot’s checklist, not
autopilot.

MLTRL is intended to be complementary to existing software
development methodologies, not replace or alter them. Specifically,
whether the team uses agile or waterfall methods, MLTRL can be
adopted to help define and structure phases of the project, as well as
the success criteria of each stage. In the context of the software
development process, the purpose of MLTRL is to help the team
minimize the technical dept and risk associated with the delivery of an
ML application by helping the development team ask necessary
questions.

We discussed many data challenges and approaches in the con-
text of MLTRL and should highlight again the importance of data
considerations in anyML initiative. Thedata availability andquality can
severely limit the ability to develop and deploy ML, whether MLTRL is
usedor not. It is again the responsibility of theMLpractitioners, teams,
and stakeholders to gather, use, and distribute data in safe, legal, and
ethical ways.MLTRLhelps do sowith rigor and transparency, but again
is not a solution for data bias. We recommend these recent works on
data bias in ML67–71. Further, ML/AI ethics is a continuously evolving,
multidisciplinary space—see ref. 5. MLTRL aims to prioritize ethics
considerations at each level of the framework, and would do well to
also evolve over time with the broader ML/AI ethics developments.

Outlook
We have described Machine Learning Technology Readiness Levels
(MLTRL), an industry-hardened systems engineering framework for
robust, reliable, and responsible machine learning. MLTRL is derived
from the processes and testing standards of spacecraft development,
yet lean and efficient for ML, data, and software workflows. Examples
from several organizations across industries demonstrate the efficacy
ofMLTRL for AI andML technologies, from research and development
through productization and deployment, in important domains such
as healthcare and physics, with emphasis on data readiness amongst
other critical challenges. Our aim is for MLTRL works in synergy with
recent approaches in the community focused on diligent data readi-
ness, privacy and security, and ethics. Evenmore, MLTRL establishes a
much-needed lingua franca for the AI ecosystem, and broadly for AI in
the worlds of science, engineering, and business. Our hope is that our
systems framework is adopted broadly in AI andMLorganizations, and
that "technology readiness levels” become common nomenclature
across AI stakeholders— from researchers and engineers to sales-
people and executive decision-makers.

Methods
Gated reviews
At the end of each stage is a dedicated review period: (1) present the
technical developments along with the requirements and their corre-
sponding verification measures and validation steps, (2) make key
decisions on path(s) forward (or backward) and timing, and (3) debrief
the process (Debriefing (or: retrospectives, formal inquiry, final report,
etc.) is a common process, used to improve future performance of
projects in project management. See the following reference for more
details72. MLTRL should include regular debriefs and meta-evaluations
such that process improvements can be made in a data-driven, effi-
cient way (rather than an annual meta-review). MLTRL is a high-level
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framework that each organization should operationalize in a way that
suits their specific capabilities and resources.). As in the gated reviews
defined by TRL used by NASA, DARPA, etc., MLTRL stipulates specific
criteria for review at each level, as well as calling out specific key
decision points (noted in the level descriptions above). The designated
reviewers will "graduate” the technology to the next level, or provide a
list of specific tasks that are still needed (ideally with quantitative
remarks). After graduation at each level, the working group does a
brief post-mortem; we find that a quick day or two pays dividends in
cutting away technical debt and improving team processes. Regular
gated reviews are essential for making efficient progress while ensur-
ing robustness and functionality that meets stakeholder needs. There
are several important mechanisms in MLTRL reviews that are specifi-
cally usefulwithAI andML technologies: First, the reviewpanels evolve
over a project lifecycle, asnotedbelow. Second,MLTRLprescribes that
each review runs through an AI ethics checklist defined by the orga-
nization; it is important to repeat this at each review, as the review
panel and stakeholders evolve considerably over a project lifecycle. As
previously described in the levels definitions, including ethics reviews
as an integral part of early system development is essential for
informing model specifications and avoiding unintended biases or
harm73 after deployment.

TRL "Cards”
In Fig. 2 we succinctly showcase a key deliverable: TRL Cards. The
model cards proposed by Google74 are a useful development for
external user-readiness withML. On the other hand, our TRL Cards are
more information-dense, like datasheets for medical devices and
engineering tools. These serve as "report cards” that grow and improve
upon graduating levels and provide a means of inter-team and cross-
functional communication. The content of a TRLCard is roughly in two
categories: project info, and implicit knowledge. The former clearly
states info such as project owners and reviewers, development status,
and semantic versioning—not just for code, but also for models and
data. In the latter category are specific insights that are typically siloed
in the ML development team but should be communicated to other
stakeholders: modeling assumptions, dataset biases, corner cases, etc.
With the spread of AI andML in critical application areas, we are seeing
domain expert consortiums defining AI reporting guidelines—e.g.,
Rivera et al.75 calling for clinical trial reports for interventions involving
AI –whichwill greatly benefit from the use of our TRL reporting cards.
We stress that these TRL Cards are key for the progression of projects,
rather than documentation afterthoughts. The TRL Cards thus pro-
mote transparency and trust, within teams and across organizations.
TRL Card templates will be open-sourced upon publication of this
work, including methods for coordinating use with other reporting
tools such as "Datasheets for Datasets”76.

Risk mitigation
Identifying and addressing risks in a software project is not a new
practice. However, akin to the MLTRL roots in spacecraft engineering,
the risk is a "first-class citizen” here. In the definition of technical and
product requirements, each entry has a calculation of the form risk =
p(failure) × value, where the value of a component is an integer 1−10.
Being diligent about quantifying risks across the technical require-
ments is a useful mechanism for flagging ML-related vulnerabilities
that can sometimes be hidden by layers of other software. MLTRL also
specifies that risk quantification and testing strategies are required for
sim-to-real development. That is, there is nearly always a non-trivial
gap in transferring a model or algorithm from a simulation testbed to
the real world. Requiring explicit sim-to-real testing steps in the
workflow helps mitigate unforeseen (and often hazardous) failures.
Additionally, the comprehensive ML test coverage that we mention
throughout this paper is a critical strategy for mitigating risks and
uncertainties: ML-based system behavior is not easily specified in

advance, but rather depends on the dynamic qualities of the data and
on various model configuration choices20.

Non-monotonic, non-linear paths
We observe many projects benefit from cyclic paths, dialing compo-
nents of technology back to a lower level. Our framework not only
encourages cycles, but we also make them explicit with "switchback
mechanisms” to regress thematurity of specific components in anML/
AI system:
1. Discovery switchbacks occur as a natural mechanism—new tech-

nical gaps are discovered through systems integration, sparking
later rounds of component development77. These are most com-
mon in the R&D phase for switching back one or two levels, and
also a larger leapback across the "producthandoff”gap from level
6 to 3—for example, a computer vision algorithm is only perfor-
mant on a certain class of camera that is not necessarily available
in production, so the algorithm must switchback to validate
proof-of-concept on the lower grade camera.

2. Review switchbacks result from gated reviews, where specific
components or larger subsystems may be dialed back to earlier
levels. This switchback is one of the "key decision points” in the
MLTRL project lifecycle (as noted in the Levels definitions) and is
often a decision driven by business needs and timing rather than
technical concerns (for instance when mission priorities and
funds shift). This mechanism is common from levels 6/7 to 4,
which stresses the importance of this R&D to the product transi-
tion phase (see Fig. 4 (left)).

3. Embedded switchbacks are predefined in the MLTRL process.
Namely one switchback to move a proof-of-concept technology
(at Level 4) back to proof-of-principle development (Level 2), and
another for switching back from deployment (9) to proof-of-
concept (4). In complex systems, particularly with ML and data-
driven technologies, these built-in loops help mitigate technical
debt and overcome other inefficiencies such as noncomprehen-
sive V&V steps.

The three classes of switchbacks are described in Figs. 4, 3 and
throughout the various application results. Without these built-in
mechanisms for cyclic development paths, it can be difficult and
inefficient to build systems of modules and components at varying
degrees of maturity. Contrary to the traditional thought that switch-
back events should be suppressed and minimized, in fact, they
represent a natural and necessary part of the complex technology
development process—efforts to eliminate them may stifle important
innovations without necessarily improving efficiency. This is a fault of
the standard monotonic approaches in ML/AI projects, stage-gate
processes, and even the traditional TRL framework.

It is also important to note thatmost projects do not start at Level
0; very fewML companies engage in this low-level theoretical research.
For example, a team looking to use an off-the-shelf object recognition
model could start that technology at Level 3, and proceed with thor-
ough V&V for their specific datasets and use-cases. However, no
technology can skip levels after the MLTRL process has been initiated.
The industry default (that is, without implementing MLTRL) is to
ignorantly take pretrained models, run fine tuning on their specific
data, and jump to deployment, effectively skipping Levels 5–7. These
patterns are shown in Fig. 4. Additionally, we find it advantageous to
incorporate components from other high-TRL ranking projects while
starting new projects; MLTRL makes the verification and validation
(V&V) step straightforward for integrating previously developed ML
components.

Evolving people, objectives, and measures
As suggested earlier, much of the practical value of MLTRL comes at
the transition between levels. More precisely, MLTRL manages these
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oft-neglected transitions explicitly as evolving teams, objectives, and
deliverables. For instance, the team (or working group) at Level 3 is
mostly AI Research Engineers, but at Level 6 is mixed Applied AI/SW
Engineers mixed with product managers and designers. Similarly, the
review panels evolve from level to level, to match the changing tech-
nology development objectives. What the reviewers reference simi-
larly evolves: notice in the level definitions that technical requirements
and V&V guide early stages, but at and after Level 6 the product
requirements and V&V takeover—naturally, the risk quantification and
mitigation strategies evolve in parallel. Regarding the deliverables,
notably TRL Cards and risk matrices78 (to rank and prioritize various
science, technical, and project risks), the information develops and
evolves over time as the technology matures.

Quantifiable progress
By defining technology maturity in a quantitative way, MLTRL enables
teams to accurately and consistently define their ML progressmetrics.
Notably industry-standard "objectives and key results” (OKRs) and
"key performance indicators” (KPIs)79 can be defined as achieving
certain readiness levels in a given period of time; this is a preferable
metric in essentially all ML systems which consist ofmuchmore than a
single performance score to measure progress. Even more, a meta-
review of MLTRL progress over multiple projects can provide useful
insights at the organization level. For example, analysis of the time-per-
level and the most frequent development paths/cycles can bring to
light operational bottlenecks. Compared to conventional software
engineering metrics based on sprint stories and tickets, or time-
tracking tools, MLTRL provides a more accurate analysis of ML
workflows.

Communication and explanation
A distinct advantage of MLTRL in practice is the nomenclature: an
agreed-upon grading scheme for thematurity of anAI technology, and
a framework for how/when that technology fits within a product or
system, enabling everyone to communicate effectively and transpar-
ently. MLTRL also acts as a gate for interpretability and
explainability–at the granularity of individual models and algorithms,
and more crucially from a holistic, systems standpoint. Notably, the
DARPA XAI (DARPA Explainable Artificial Intelligence (XAI)) program
advocates for this advance in developing AI technologies; they suggest
interpretability and explainability are necessary at various locations in
an AI system to be sufficient for deployment as an AI product, other-
wise leading to issues with ethics and bias.

Robustness via uncertainty-aware ML
How to design a reliable system from unreliable components has been
a guiding question in the fields of computing and intelligence80. In the
case of ML/AI systems, we aim to build reliable systems with myriad
unreliable components: noisy and faulty sensors, human and AI error,
and so on. There is thus significant value to quantifying the myriad
uncertainties, propagating them throughout a system, and arriving at a
notion or measure of reliability. For this reason, although MLTRL
applies generally to ML/AI methods and systems, we advocate for
methods in the class of probabilisticML, whichnaturally represent and
manipulate uncertainty about models and predictions25. These are
Bayesian methods that use probabilities to represent aleatoric uncer-
tainty, measuring the noise inherent in the observations, and epistemic
uncertainty, accounting for uncertainty in the model itself (i.e., cap-
turing our ignorance about which model generated the data). In the
simplest case, an uncertainty-aware ML pipeline should quantify
uncertainty at the points of sensor inputs or perception, prediction or
model output, and decision or end-user action—McAllister et al.26

suggest this with Bayesian deep learningmodels for safer autonomous
vehicle pipelines. We can achieve this sufficiently well in practice for
simple systems. However, we do not yet have a principled,

theoretically grounded, and generalizable way of propagating errors
and uncertainties downstream and throughout more complex AI sys-
tems—i.e., how to integrate different software, hardware, data, and
human components while considering how errors and uncertainties
propagate through the system. This is an important direction for our
future work.

Data availability
Data sharing is not applicable to this article as no datasets were gen-
erated or analyzed during the current study. For the presented
examples reflecting other studies, datasets may be found in the cor-
responding links or references provided in the text (if applicable).
Please contact the corresponding author(s) with questions or
concerns.

Code availability
Code sharing is not applicable to this article as no code was produced.
Otherwise, implementation materials for this work are included in an
open-source repository at https://github.com/ai-infrastructure-
alliance/mltrl, along with a full MLTRL home at ai-infrastructure.
org/mltrl).
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